

PWS ID NO. 5020040

Annual Drinking Water Quality Report For Year 2019

We're pleased to present to you this year's Annual Drinking Water Quality Report. This report is designed to inform you about the quality of the water and services we deliver to you every day. Our constant goal is to provide you with a dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. Our water is purchased from Pittsburgh Water and Sewer Authority (**PWSA**) and is treated surface water from the Allegheny River. A Source Water Assessment of this source was completed in 2002. A summary report is available at www.dep.state.pa.us (search: "Source Water Assessment"). Complete reports are available for review at the PADEP Southwest Regional Office 412-442-4000. The PWSA Water Treatment Plant is located on the north shore of the Allegheny River at the eight (8) mile marker and is directly across from the Waterworks Mall on Freeport Road.

If you would like to receive a printed copy of your Annual Drinking Water Quality Report, please contact our office at 412-963-0212 or email: info@foxchapelwater.com.

We are pleased to report that our drinking water <u>meets</u> or <u>exceeds</u> all federal, state, and local requirements. If you have any questions about your water utility, please contact our Manager at (412) 963-0212. We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled Board Meetings. They are held on the last Tuesday of every month at 7:00 PM at the Authority Office located at 255 Alpha Drive, O'Hara Township. If you have any questions about this report or would like your water tested, please feel free to contact Don Kendrick, Water Quality Supervisor at (412) 963-0212.

(Este informe contiene informacion muy importante subre su agua de beber. Traduzcalo o hable con alguien que lo entienda bien.) (This report contains important information about your drinking water. Have someone translate it for you, or speak to someone who understands it.)

IMPORTANT HEALTH INFORMATION

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice (from their health care providers) about drinking the water. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the:

Safe Drinking Water Hotline 1-800-426-4791

During 2019 the Authority personnel repaired 80 major water breaks, 11 service line leaks and performed 15 preventive maintenance jobs. Our service department made 16 new service connections, which brings our total connections to 5508. Our crews also performed main line valve maintenance on 545 valves to insure proper operation in the event of a water break. We also performed a system wide flush on 646 fire hydrants and 200 blow offs to assist with water quality and fire protection.

The Authority has an aggressive Cross Connection Control Program in place which requires all Commercial, Industrial and Municipal service connections to be in compliance with the backflow program. All new connections and repairs to existing connections must also be in compliance. Our program requires all existing homes to be brought into compliance when they are sold. For more information about our backflow program contact Don Kendrick at 412-963-0212.

All sources of drinking water are subject to potential contamination by constituents that are naturally occurring or man made. Those constituents can be microbes, organic or inorganic chemicals, or radioactive materials. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Fox Chapel Authority is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water before it is treated include:

Microbial contaminants, such as disease causing viruses and bacteria which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

Inorganic chemical contaminants, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.

Pesticides and herbicides, which may come from a variety of sources such as agriculture and residential uses.

Radioactive contaminants, which are naturally occurring or be the result of oil and gas production and mining activities

Organic chemical contaminants, including synthetic and volatile chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff and septic systems.

Nitrates: As a precaution, we always notify physicians and health care providers in this area if there is ever a higher than normal level of nitrates in the water supply.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Our water is treated according to EPA's regulations. Food and Drug Administration regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Fox Chapel Authority routinely monitors for constituents in your drinking water according to Federal and State laws. The tables below show the results of monitoring for the period of January 1st to December 31st, 2019

			FCA TES	TRES	ULT	S			
Lead and Copper Rule									
Contaminant (Unit of measurement)	Violation Yes / No	Level Detected	Range		MCL	.G	ľ	MCL	Likely Source of Contamination
Copper (ppm)	No	90 th percentile = .11	No sites above AL out of 30 1 sampled		1.3		Al	L=1.3	Corrosion of household plumbing systems; erosion of natural deposits.
Lead (ppb)	No	90 th Percentile = 3.0	No sites ab AL out of sampled	30	0		Α	L=15	Corrosion of household plumbing systems, erosion of natural deposits
Volatile Organic Contam	ninants								
Contaminant (Unit of measurement)	Violation Yes / No	Level Detected	Range	MCLG		ample Date	ļ	MCL	Likely Source of Contamination
Total Trihalomethanes (ppb)	No	41	16-83	n/a	2	2019		80	By-product of drinking water chlorination
Haloacetic Acids (ppb)	No	18	11-30	n/a	2	2019		60	By-product of drinking water chlorination
Disinfectant Residual									
Contaminant (Unit of measurement)	Level Detected	Range	MRDLG		mple ate	MCL/M DL	1R	Violation Y/N	Sources of Contamination
Total Chlorine Residual in Distribution System (ppm)	(a)0.87	0.48-0.87	4	2	019	4		No	Water additive used to control microbes.

		P	WSA TEST R	ESULTS		
Contaminant (Unit of measurement)	Violation Yes / No	Level Detected	Range	MCLG	MCL	Likely Source of Contamination
Inorganic Chemical Cont	aminants					
Nitrate (ppm)	No	0.655	0.53079	10	10	Runoff from fertilizers; leaching from sewage; natural deposits
Barium (ppm)	No	0.0344	(b)	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
TOC Removal						
Total Organic Carbon (TOC) (% removal) (c)	No	No Quarters out of compliance	44.6% to 46.5%	M/A	TT = 35%	Naturally present in the environment
Inorganic Chemical Cont	aminants					
Fluoride (ppm)	No	0.77	(b)	2	2	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
Corrosion Control		<u> </u>				
Orthophosphate (ppm)	No	0.0166667	0.0 - 0.06	None	None	Water additive for corrosion control

Footnotes:

- (a) Highest concentration of total chlorine detected.
- (b) Only one sample required.
- (c) Adequate removal of TOC may be necessary to control unwanted formation of disinfection byproducts.

In 2019 it was necessary to utilize a small amount of water from Harmar Water Authority and Hampton Shaler Water Authority. Their test results are included here for your information.

			HARMA	AR WA	TER	AUT	HOF	RIT	Y TI	EST I	RESU	LTS		
Chemical Contaminar	nt	MCL	MCLG	High Lev Detec	el	Range Detecti		Un	nits		ate ipled	Violati Y/N		Sources of Contamination
Arsenic		10	0	1.00)	(a)		p	pb	9/18	3/18	N	d or g p	rosion of natural eposits; Runoff from rchards; Runoff from lass and electronics roduction wastes
Nitrate		10	10	0.90)	(a)		pj	pm	11/5	5/19	N	le se de	tunoff from fertilizer use; eaching from septic tanks, ewage; erosion of natural eposits.
TTHM (Total Trihalometh	nanes)	80	N/A	28.4	0	(a)		p	pb	9/9	/19	N		syproduct of drinking vater chlorination.
Chlorine (Distribution)		MRDL =4	MRDLG =4	1.24 (Decem		0.47-1	.24	p	pm	20	19	N		Vater additive used to ontrol microbes.
Uranium		30	0	2.41	1	(a)		u	g/l	7/14	1/15	N		rosion of natural eposits.
Entry Point I	Disinfe	ectant I	Residual											
Contaminant	Dis	inimum infectan tesidual	t L	west evel ected	Ran Detec	ge of ctions	Uni	ts	Sar	west nple ate		lation //N	Sou	rces of Contamination
Chlorine (2018)		0.5	O	0.60		-2.20	ppr	n	10	/4/19		N	Wate	r additive used to control microbes.
Contaminant	Le	tion evel (L)	MCLG	Perc	0 th centile alue	Unit	ts		of Site			lation //N		rces of Contamination
Lead (2019)	1	5	0	3	3.01	ppb		0 ou	ıt of 1	.0		N	plum	orrosion of household bing systems, Erosion of natural deposits.
Copper (2019)	1.	.3	1.3	1	.00	ppm		0 ou	ıt of 1	.0		N	Plum nat	orrosion of household bing Systems, Erosion of ural deposits; Leaching om wood preservatives.

Footnote: (a) only one sample required.

For more information on Harmar Water Authority please see their web site www.harmarwater.com

HAMPTON SHALER WATER AUTHORITY TEST RESULTS

Chemical Contan	ninants	Hampte	on Shaler I	Nater Autho	rity			
Contaminant	MCL in CCR Units	MCLG	Level Detected	Range of Detections	Units	Sample Date	Violation Y/N	Sources of Contamination
Nitrate	10	10	0.29	0.23-0.29	ppm	2019	No	Runoff from fertilizer use; Leaching from septic tanks; sewage; Erosion of natural deposits
Cis-1,2 Dichloroethlyne	70	70	1.7	0.666-1.7	ppb	2019	No	Discharge from industrial chemical factories
Tetrachloroethlyne	5	0	1.28	0-1.28	ppb	2019	No	Discharges from factories and dry cleaners
TTHMs	80	NA	31.47	16.2-93.1	ppb	2019	No	By- product of drinking water chlorination
HAAs	60	NA	8.48	0-24.9	ppb	2019	No	By- product of drinking water disinfection
Chlorine (Distribution)	4	4	0.73	0.53-0.73	ppm	2019	No	Water additive used to control microbes

Chemical Con		s West	View Water	Authority				
Contaminant	MCL in CCR Units	MCLG	Level Detected	Range of Detections	Units	Sample Date	Violation Y/N	Sources of Contamination
Barium	2	2	0.028	0.28	ppm	2019	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits
Fluoride *	2	2	0.43	0.43	ppm	2019	No	Erosion of natural deposits; Water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
Nitrate	10	10	<1.4	<1.4	ppm	2019	No	Runoff from fertilizer use; Leaching from septic tanks; sewage; Erosion of natural deposits
Nitrite	1	1	<0.005	<0.005	ppm	2019	No	Runoff from fertilizer use; Leaching from septic tanks; sewage; Erosion of natural deposits
Cyanide (free)	200	200	72	72	ppb	2019	No	Discharge from steel/metal factories; Discharge from plastic and fertilizer factories

HAMPTON SHALER WATER AUTHORITY TEST RESULTS cont.

Di(2-ethylhexyl) adipate	400	400	<1.5	<1.5	ppb	2018	No	Discharge from industrial chemical factories
Di(2-ethylhexyl) phthalate	6	0	<1.5	<1.5	ppb	2018	No	Discharges from rubber and chemical factories
TTHMs	80	NA	65.3	17.4-102	ppb	2019	No	By- product of drinking water chlorination
HAAs	60	NA	24.5	0-30.9	ppb	2019	No	By- product of drinking water disinfection
Chlorine (Distribution Zone A)	4	4	1.5	0.8-1.5	ppm	2019	No	Water additive used to control microbes
Chlorine (Distribution Zone B)	4	4	1.6	1.1-1.6	ppm	June- Oct. 2019	No	Water additive used to control microbes

^{*}EPA's MCL for fluoride is 4 ppm. However, Pennsylvania has set a lower MCL to better protect human health.

Contaminant	Minimum Disinfectant Residual	Lowest Level Detected	Range of Detections	Units	Sample Date	Violation Y/N	Sources of Contamination
Chlorine (HSWA)	0.60	0.58	0.58-1.08	ppm	12/13/219	No	Water additive used to control microbes.
Chlorine (WVWA)	0.20	1.5	1.5-2.1	ppm	2019	No	Water additive used t

Lead and Co	pper Hai	npton S	haler Water	Author			
Contaminant	Action Level (AL)	MCLG	90 th Percentile Value	Units	# of Sites Above AL of Total Sites	Violation Y/N	Sources of Contamination
Lead	15	0	2.15	ppb	0 of 30	No	Corrosion of household plumbing systems; erosion of natural deposits
Copper	1.3	1.3	0.209	ppm	0 of 30	No	Corrosion of household plumbing systems; Erosion of natural deposits; leaching from wood preservatives

Contaminants	MCL	MCLG	Results	Violation Y/N	Sources of Contamination
Total Coliform Bacteria	5% of monthly samples are positive	0	1% 1 positive sample in May, 2019 out of 863 samples for year	- No	Naturally present in the environment.
E. coli Bacteria	5% of monthly samples are positive	0	No positive samples	No	Human or anima fecal waste.

Turbidity NT	U – West View Water Authority				
Contaminant	MCL / Unit	Highest Detect	Lowest %	Violation Y/N	Major Sources
Turbidity	TT = 1 NTU for a single measurement and TT = 95% of monthly samples <0.3 NTU	0.069	100% February 2019	No	Soil Runoff

HAMPTON SHALER WATER AUTHORITY TEST RESULTS cont.

Total Organi	c Carbon (TOC) - We	st View Wa	ter Authority			
Contaminant	Unit	% Removal Required	% Removal Achieved	# Quarters out of Compliance	Sample Date	Violation Y/N	Sources of Contamination
Total Organic Carbon	% Removed	25-35%	38-48%	0	2019	No	Naturally present in the environment

Contaminant	Detect Limit	Average Level Detected	Range of Detections	Units	Sample Date	Violation Y/N	Sources of Contamination
HAA5	NA	8.21	2.1-19.2	ppb	2019	No	By-product of drinking water chlorination
HAA6Br	NA	8.56	3.05-13.31	ppb	2019	No	By-product of drinking water chlorination
HAA9	NA	14.67	5.1-27.08	ppb	2019	No	By-product of drinking water chlorination
		NA	1.1				Naturally occurring element; used in steel
Manganese	0.4	0.65**	0-1.3**	ppb	2019	No	production, fertilizer, batteries and fireworks
Calcium		79.3	64-123	ppm	2019	No	Naturally occurring element
Orthophosphate		.456	.04-1.62	ppm	2019	No	Water additive for corrosion control

^{**} HSWA at WVWA entry point on Wallace Road

Contaminant	Detect Limit	Average Level Detected	Range of Detections	Units	Sample Date	Violation Y/N	Sources of Contamination	
Bromide	1	0.72	0-2.3	ppm	2019	No	Naturally occurring element; used in hydraulic fracturing to extract natural gas from shale	
Strontium	0.3	110	110	ppb	2015	No	Naturally occurring element; used in making CRT televisions	
Chromium, Hexavalent	0.03	0.05	0.04-0.06	ppb	2015	No	Naturally occurring element; used in making steel and other alloys	
Manganese	0.4 1.62		1.62	ppb	2018	No	Naturally occurring element; used in steel production, fertilizer, batteries and fireworks	
HAA6BR	NA	11.0	4.1-24.3			By-product of drinking water chlorination		
НАА9	NA	21.8	12.0-42.0	ppb	2018	No	By-product of drinking water chlorination	

IMPORTANT INFORMATION ABOUT YOUR DRINKING WATER

Availability of Monitoring Data for Unregulated Contaminants (UCMR4) for Fox Chapel Authority

Our water system has sampled for a series of unregulated contaminants.

Unregulated contaminants are those that don't yet have a drinking water standard set by EPA. The purpose of monitoring for these contaminants is to help EPA decide whether the contaminants should have a standard. As our customers, you have a right to know that these data are available. If you are interested in examining the results, please contact Don Kendrick at 412-963-0212 or stop by our office at 255 Alpha Drive, Pittsburgh, Pa 15238.

This notice is being sent to you by Fox Chapel Authority. State Public Water System ID#: 5020040.

UCMR4 DETECTIONS									
Contaminant	Level/Range of Detections	Units	Sample Date	Location	Violation Y/N				
Manganese	0.59 – 2.00	ppb	2019	PWSA Connection at River Road	N				
HAA5	8.60 – 30.34	ppb	2019	Distribution System	N				
HAA6Br	5.92 – 11.80	ppb	2019	Distribution System	N				
HAA9	14.0 – 40.40	ppb	2019	Distribution System	N				

GLOSSARY

In the following table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

<u>Action Level (AL)</u> – The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Less Than (<) – This sign indicates that the sample result is actually below the stated number.

<u>Maximum Contaminant Level</u> - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

<u>Maximum Contaminant Level Goal</u> - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

<u>Maximum Residual Disinfectant Level (MRDL)</u> – The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

<u>Maximum Residual Disinfectant Level Goal (MRDLG)</u>- The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination.

Millirems per year (mrem/yr.) – A measure of radiation absorbed by the body.

<u>Nephelometric Turbidity Unit (NTU)</u> – A measure of turbidity, or the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

Non Applicable (NA) – Does not apply.

Non-Detects (ND) - laboratory analysis indicates that the contaminant is not present at a detectable level.

<u>Parts per billion (ppb) or Micrograms per liter (ug/l)</u> - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

<u>Parts per million (ppm) or Milligrams per liter (mg/l)</u> - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Picocuries per liter (pCi/L) – A measure of the radioactivity in water.

<u>Treatment Technique (TT)</u> - A required process intended to reduce the level of a contaminant in drinking water.

Turbidity- A measure of the clarity of water.

Thank you for allowing us to continue providing your family with safe, high quality water this year. We at the Fox Chapel Authority work around the clock to provide top quality water to every tap. We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life and our children's future.

Since a number of federal acts passed, such as the Public Health, Security and Bioterrorism Preparedness and Response Act and the Homeland Security Act, small US water systems serving more than 3,300 persons are now actively involved in security issues. We ask that our customers who live near our remote tank sites, pumping facilities and fire hydrants to notify the Authority if they notice any suspicious activity and we will be happy to investigate.

WATER CONSERVATION

Water-saving plumbing fixtures and appliances are cost effective, providing permanent long-term economic advantages. Low-flow toilets, showerheads and faucet aerators save valuable water and energy used to heat water without requiring a change in personal use habits.

A dripping faucet is more than annoying; it's expensive. Even small leaks can waste significant amounts of water. Hot water leaks are not only a waste of water, but also of the energy needed to heat the water. Leaks inside a toilet can waste up to 200 gallons of water a day. Toilet leaks can be detected by adding a few drops of food coloring to water in the toilet tank. If the colored water appears in the bowl, the tank is leaking. Repair leaking faucets and toilets.

Use Water-Saving Plumbing Fixtures/Appliances

Bathroom

The Federal Energy Act of January 1994 limited all new manufactured toilets to 1.6 gallons per flush. If the toilet was manufactured before 1994, place a plastic gallon container in the toilet tank to save water with each flush. Install low-flow showerheads that use no more than 2.5 gallons per minute at maximum flow. Install low-flow faucets that use no more than 2.2 gallons per minute at maximum flow.

Kitchen/Laundry

Replace the more common, less efficient, top loading clothes washer with a high-efficiency, front-loading washer that uses about 30 percent less water and 40 to 50 percent less energy. Operate the clothes washer and dishwasher only when they are fully loaded. Install low-flow aerators on all faucets.

Change Water Use Habits

Water Saving Tips Inside the Home

Turn the faucet off while brushing teeth. Use a glass of water for rinsing teeth.

When shaving, use a sink filled with rinse water. Do not let the faucet flow.

Take short showers instead of baths and consider bathing small children together.

Do not use the toilet as a trash can.

If the shower has a single hand control or shut off valve, turn off the flow while soaping or shampooing. Refrigerate a bottle of drinking water instead of letting a faucet flow until the water is cold enough to drink.

Turn the faucet off while cleaning vegetables. Rinse them in the sink with the drain closed or in a pan.

When washing dishes by hand, do not leave the faucet flowing for rinsing. Instead, use a dish rack and

spray device to rinse them. If there are two sinks, fill one with soapy water and one with rinse water.

Fill the sink with water to pre-rinse dishes before putting them in the dishwasher.

Water Saving Tips Outside the Home

Use a broom, not a hose, to clean driveways, steps and sidewalks.

Wash the car with water from a bucket. If a hose is used, control the flow with an automatic shut off nozzle.

Water the lawn only when needed. If grass does not spring back after walking on it, it probably needs water.

Water the lawn or garden during the coolest part of the day. Do not water on windy days.

Set sprinklers to water the lawn or garden only. Do not water the street or sidewalk.

Use soaker hoses and trickle irrigation systems to reduce the amount of water used by 20 to 50 percent.

Mulch around shrubs and garden plants to reduce evaporation from the soil and inhibit weeds.

In landscaping, use native plants that require less care and water than ornamental varieties.

Cover the swimming pool to prevent evaporation.

Adjust the lawn mower to a higher setting to provide natural ground shade and to promote water retention by the soil.